Algorithms for Reinforcement Learning

Csaba Szepesvári

ISBN 10: 303100423X ISBN 13: 9783031004230
Verlag: Springer International Publishing AG, CH, 2010
Neu Paperback

Verkäufer Rarewaves USA, OSWEGO, IL, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 10. Juni 2025


Beschreibung

Beschreibung:

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration. Bestandsnummer des Verkäufers LU-9783031004230

Diesen Artikel melden

Inhaltsangabe:

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Über die Autorin bzw. den Autor: Csaba Szepesvári received his PhD in 1999 from "Jozsef Attila" University, Szeged, Hungary. He is currently an Associate Professor at the Department of Computing Science of the University of Alberta and a principal investigator of the Alberta Ingenuity Center for Machine Learning. Previously, he held a senior researcher position at the Computer and Automation Research Institute of the Hungarian Academy of Sciences, where he headed the Machine Learning Group. Before that, he spent 5 years in the software industry. In 1998, he became the Research Director of Mindmaker, Ltd., working on natural language processing and speech products, while from 2000, he became the Vice President of Research at the Silicon Valley company Mindmaker Inc. He is the coauthor of a book on nonlinear approximate adaptive controllers, published over 80 journal and conference papers and serves as the Associate Editor of IEEE Transactions on Adaptive Control and AI Communications, is on the board of editors of theJournal of Machine Learning Research and the Machine Learning Journal, and is a regular member of the program committee at various machine learning and AI conferences. His areas of expertise include statistical learning theory, reinforcement learning and nonlinear adaptive control.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Algorithms for Reinforcement Learning
Verlag: Springer International Publishing AG, CH
Erscheinungsdatum: 2010
Einband: Paperback
Zustand: New
Auflage: 1st.

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

Csaba Szepesvári
ISBN 10: 303100423X ISBN 13: 9783031004230
Neu Paperback Erstausgabe

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. 1st. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration. Bestandsnummer des Verkäufers LU-9783031004230

Verkäufer kontaktieren

Neu kaufen

EUR 37,08
Versand: EUR 73,61
Von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Csaba Szepesvári
ISBN 10: 303100423X ISBN 13: 9783031004230
Neu Paperback Erstausgabe

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. 1st. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration. Bestandsnummer des Verkäufers LU-9783031004230

Verkäufer kontaktieren

Neu kaufen

EUR 41,83
Versand: Gratis
Von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb