Data Analysis Using Regression and Multilevel/Hierarchical Models

Andrew Gelman

ISBN 10: 052168689X ISBN 13: 9780521686891
Verlag: Cambridge University Press, 2006
Neu paperback

Verkäufer Textbooks_Source, Columbia, MO, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 10. November 2017


Beschreibung

Beschreibung:

Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Bestandsnummer des Verkäufers 000854440N

Diesen Artikel melden

Inhaltsangabe:

Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. It introduces and demonstrates a variety of models and instructs the reader in how to fit these models using freely available software packages.

Über die Autorinnen und Autoren: Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published over 150 articles in statistical theory, methods, and computation, and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).

Jennifer Hill is Assistant Professor of Public Affairs in the Department of International and Public Affairs at Columbia University. She has co-authored articles that have appeared in the Journal of the American Statistical Association, American Political Science Review, American Journal of Public Health, Developmental Psychology, the Economic Journal and the Journal of Policy Analysis and Management, among others.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Data Analysis Using Regression and ...
Verlag: Cambridge University Press
Erscheinungsdatum: 2006
Einband: paperback
Zustand: New
Auflage: 1st Edition.

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Gelman Andrew, Hill Jennifer
ISBN 10: 052168689X ISBN 13: 9780521686891
Gebraucht Couverture souple Erstausgabe

Anbieter: La Bouquinerie des Antres, Delémont, Schweiz

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Couverture souple. Zustand: very good. 1ère Édition. 11th printing, 625 p., analytical methods for social research. 4x18x26 cm, 1200 gr. réf. GFS230. Bestandsnummer des Verkäufers 001377

Verkäufer kontaktieren

Gebraucht kaufen

EUR 40,00
EUR 12,00 shipping
Versand von Schweiz nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Neu Paperback Erstausgabe
Print-on-Demand

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: / gelman/arm/ Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: ~gelman/arm/ This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780521686891

Verkäufer kontaktieren

Neu kaufen

EUR 77,07
EUR 42,28 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Neu Softcover Erstausgabe

Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 2006. 1st Edition. paperback. This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models. Series Editor(s): Alvarez, R. Michael; Beck, Nathaniel L.; Wu, Lawrence L. Series: Analytical Methods for Social Research. Num Pages: 648 pages, 160 exercises. BIC Classification: JHBC; PBK. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 254 x 179 x 37. Weight in Grams: 1120. Series: Analytical Methods for Social Research. 648 pages, 160 exercises. For the applied researcher performing data analysis using linear and nonlinear regression and multilevel models. Cateogry: (P) Professional & Vocational; (U) Tertiary Education (US: College). BIC Classification: JHBC; PBK. Dimension: 254 x 179 x 37. Weight: 1132. Series Editor(s) :Alvarez, R. Michael; Beck, Nathaniel L.; Wu, Lawrence L. . . . . . Bestandsnummer des Verkäufers V9780521686891

Verkäufer kontaktieren

Neu kaufen

EUR 78,27
EUR 10,50 shipping
Versand von Irland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Neu Paperback Erstausgabe
Print-on-Demand

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: / gelman/arm/ Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: ~gelman/arm/ This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780521686891

Verkäufer kontaktieren

Neu kaufen

EUR 86,44
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Neu Paperback Erstausgabe
Print-on-Demand

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: / gelman/arm/ Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: ~gelman/arm/ This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9780521686891

Verkäufer kontaktieren

Neu kaufen

EUR 105,79
EUR 31,49 shipping
Versand von Australien nach USA

Anzahl: 1 verfügbar

In den Warenkorb