Inhaltsangabe
This memoir contains a complete classification of the finite irreducible 2-subgroups of $GL(4, {\mathbb C})$. Specifically, the author provides a parametrized list of representatives for the conjugacy classes of such groups, where each representative is defined by a generating set of monomial matrices. The problem is treated by a variety of techniques, including elementary character theory, a method for describing Hasse diagrams of submodule lattices, and calculation of 2-cohomology by means of the Lyndon-Hochschild-Serre spectral sequence. Related questions concerning isomorphism between the listed groups, and Schur indices of their defining characters, are also considered.It's features include: a complete classification of a class of $p$-groups; a first step towards extending presently available databases for use in proposed 'soluble quotient algorithms'; and, groups presented explicitly; may be used to test conjectures or to serve generally as a resource in group-theoretic computations.
Reseña del editor
This memoir contains a complete classification of the finite irreducible 2-subgroups of GL(4,C). Specifically, the author provides a parametrized list of representatives for the conjugacy classes of such groups, where each representative is defined by generating set of monomial matrices. The problem is treated by a variety of techniques, including elementary character theory, a method for describing Hasse diagrams of submodule lattices, and calculation of 2-cohomology by means of the Lyndon-Hochschild-Serre spectral sequence. Related questions concerning isomorphism between the listed groups, and Schur indices of their defining characters, are also considered.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.