Zu dieser ISBN ist aktuell kein Angebot verfügbar.
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:
Versand:
EUR 4,63
Von Vereinigtes Königreich nach USA
Buchbeschreibung paperback. Zustand: New. Language: ENG. Bestandsnummer des Verkäufers 9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung PF. Zustand: New. Bestandsnummer des Verkäufers 6959-LSI-9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback. Zustand: New. Language: English. Brand new Book. This book takes an in-depth look at the emerging technologies that are transforming the way clinicians manage patients, while at the same time emphasizing that the best practitioners use both artificial and human intelligence to make decisions. AI and machine learning are explored at length, with plain clinical English explanations of convolutional neural networks, back propagation, and digital image analysis. Real-world examples of how these tools are being employed are also discussed, including their value in diagnosing diabetic retinopathy, melanoma, breast cancer, cancer metastasis, and colorectal cancer, as well as in managing severe sepsis.With all the enthusiasm about AI and machine learning, it was also necessary to outline some of criticisms, obstacles, and limitations of these new tools. Among the criticisms discussed: the relative lack of hard scientific evidence supporting some of the latest algorithms and the so-called black box problem. A chapter on data analytics takes a deep dive into new ways to conduct subgroup analysis and how it's forcing healthcare executives to rethink the way they apply the results of large clinical trials to everyday medical practice. This re-evaluation is slowly affecting the way diabetes, heart disease, hypertension, and cancer are treated. The research discussed also suggests that data analytics will impact emergency medicine, medication management, and healthcare costs. An examination of the diagnostic reasoning process itself looks at how diagnostic errors are measured, what technological and cognitive errors are to blame, and what solutions are most likely to improve the process. It explores Type 1 and Type 2 reasoning methods; cognitive mistakes like availability bias, affective bias, and anchoring; and potential solutions such as the Human Diagnosis Project. Finally, the book explores the role of systems biology and precision medicine in clinical decision support and provides several case studies of how next generation AI is transforming patient care. Bestandsnummer des Verkäufers AAV9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers 42911616-n
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. PRINT ON DEMAND Book; New; Fast Shipping from the UK. No. book. Bestandsnummer des Verkäufers ria9781032081854_lsuk
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung PF. Zustand: New. Bestandsnummer des Verkäufers 6666-LSI-9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback. Zustand: Brand New. 184 pages. 9.21x6.14 inches. In Stock. Bestandsnummer des Verkäufers __1032081856
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback. Zustand: New. This book takes an in-depth look at the emerging technologies that are transforming the way clinicians manage patients, while at the same time emphasizing that the best practitioners use both artificial and human intelligence to make decisions. AI and machine learning are explored at length, with plain clinical English explanations of convolutional neural networks, back propagation, and digital image analysis. Real-world examples of how these tools are being employed are also discussed, including their value in diagnosing diabetic retinopathy, melanoma, breast cancer, cancer metastasis, and colorectal cancer, as well as in managing severe sepsis. With all the enthusiasm about AI and machine learning, it was also necessary to outline some of criticisms, obstacles, and limitations of these new tools. Among the criticisms discussed: the relative lack of hard scientific evidence supporting some of the latest algorithms and the so-called black box problem. A chapter on data analytics takes a deep dive into new ways to conduct subgroup analysis and how it's forcing healthcare executives to rethink the way they apply the results of large clinical trials to everyday medical practice. This re-evaluation is slowly affecting the way diabetes, heart disease, hypertension, and cancer are treated. The research discussed also suggests that data analytics will impact emergency medicine, medication management, and healthcare costs. An examination of the diagnostic reasoning process itself looks at how diagnostic errors are measured, what technological and cognitive errors are to blame, and what solutions are most likely to improve the process. It explores Type 1 and Type 2 reasoning methods; cognitive mistakes like availability bias, affective bias, and anchoring; and potential solutions such as the Human Diagnosis Project. Finally, the book explores the role of systems biology and precision medicine in clinical decision support and provides several case studies of how next generation AI is transforming patient care. This is a Brand New book, in perfect condition. Quick dispatch. Bestandsnummer des Verkäufers NLS9781032081854
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren