Zu dieser ISBN ist aktuell kein Angebot verfügbar.
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust against strong nonlinearities, high uncertainty levels, and numerous outliers. However, particularly in robotics, the Gaussian assumption is prevalent in solutions to multivariate parameter estimation problems without providing the desired level of robustness.
Robust Estimation and Applications in Robotics sets out to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. It starts by providing a concise overview of the theory of M-estimation. M-estimators share many of the convenient properties of least-squares estimators, and at the same time are much more robust to deviations from the Gaussian model assumption. It goes on to present several example applications where M-Estimation is used to increase robustness against nonlinearities and outliers.
Robust Estimation and Applications in Robotics is an ideal introduction to robust statistics that only requires preliminary knowledge of probability theory. It also includes examples of robotics applications where robust statistical tools make a difference.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Versand:
EUR 3,34
Von Vereinigtes Königreich nach USA
Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers 3434-ING-9781680832143
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback. Zustand: New. Language: English. Brand new Book. Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust against strong nonlinearities, high uncertainty levels, and numerous outliers. However, particularly in robotics, the Gaussian assumption is prevalent in solutions to multivariate parameter estimation problems without providing the desired level of robustness.Robust Estimation and Applications in Robotics sets out to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. It starts by providing a concise overview of the theory of M-estimation. M-estimators share many of the convenient properties of least-squares estimators, and at the same time are much more robust to deviations from the Gaussian model assumption. It goes on to present several example applications where M-Estimation is used to increase robustness against nonlinearities and outliers.Robust Estimation and Applications in Robotics is an ideal introduction to robust statistics that only requires preliminary knowledge of probability theory. It also includes examples of robotics applications where robust statistical tools make a difference. Bestandsnummer des Verkäufers AAV9781680832143
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback. Zustand: NEW. Clean and crisp and new!. Bestandsnummer des Verkäufers 3536985904
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. PRINT ON DEMAND Book; New; Fast Shipping from the UK. No. book. Bestandsnummer des Verkäufers ria9781680832143_lsuk
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781680832143
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Paperback. Zustand: Brand New. 58 pages. 9.21x6.14x0.12 inches. In Stock. Bestandsnummer des Verkäufers x-168083214X
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. pp. 58. Bestandsnummer des Verkäufers 26391640528
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers IQ-9781680832143
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware -Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust against strong nonlinearities, high uncertainty levels, and numerous outliers. However, particularly in robotics, the Gaussian assumption is prevalent in solutions to multivariate parameter estimation problems without providing the desired level of robustness. Robust Estimation and Applications in Robotics sets out to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. It starts by providing a concise overview of the theory of M-estimation. M-estimators share many of the convenient properties of least-squares estimators, and at the same time are much more robust to deviations from the Gaussian model assumption. It goes on to present several example applications where M-Estimation is used to increase robustness against nonlinearities and outliers. Robust Estimation and Applications in Robotics is an ideal introduction to robust statistics that only requires preliminary knowledge of probability theory. It also includes examples of robotics applications where robust statistical tools make a difference. 58 pp. Englisch. Bestandsnummer des Verkäufers 9781680832143
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. Print on Demand pp. 58. Bestandsnummer des Verkäufers 387992079
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren