A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively.
The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof.
Features:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Neil R. Nicholson is Associate Professor of Mathematics at North Central College. He holds a Ph.D. in Mathematics from The University of Iowa, specializing in knot theory. His research interests have consistently been topics accessible to undergraduates; collaborating with them on original research is a fundamental goal of his professional development. In 2015, he earned the Clarence F. Dissinger Award for Junior Faculty Teaching at North Central College. He serves as the Faculty Athletic Representative to the NCAA for North Central College.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,80 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 6,80 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Solr Books, Lincolnwood, IL, USA
Zustand: new. Bestandsnummer des Verkäufers BCV.0367201577.N
Anzahl: 1 verfügbar
Anbieter: Solr Books, Lincolnwood, IL, USA
Zustand: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear. Bestandsnummer des Verkäufers BCV.0367201577.VG
Anzahl: 1 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9780367201579
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 34972214-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580143707
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Hardcover. Zustand: New. Bestandsnummer des Verkäufers 6666-TNF-9780367201579
Anzahl: 10 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively.The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical dos and donts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology The fundamental tool of theoretical mathematics is mathematical proof. Any claim or justification a mathematician makes must be proven. This book is designed for a reader who wants to learn what exactly a mathematical proof is, how they are constructed, and how to go about writing one. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780367201579
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9780367201579
Anzahl: 5 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9780367201579
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 462. Bestandsnummer des Verkäufers 370785102
Anzahl: 3 verfügbar