This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Brandon M. Greenwell is a data scientist at 84.51° where he works on a diverse team to enable, empower, and enculturate statistical and machine learning best practices where it’s applicable to help others solve real business problems. He received a B.S. in Statistics and an M.S. in Applied Statistics from Wright State University, and a Ph.D. in Applied Mathematics from the Air Force Institute of Technology. He's currently part of the Adjunct Graduate Faculty at Wright State University, an Adjunct Instructor at the University of Cincinnati, the lead developer and maintainer of several R packages available on CRAN (and off CRAN), and co-author of “Hands-On Machine Learning with R.”
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 30,01 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,72 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: SecondSale, Montgomery, IL, USA
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00090606319
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9780367532468
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780367532468_new
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 185. Bestandsnummer des Verkäufers B9780367532468
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Bestandsnummer des Verkäufers 543244878
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Bestandsnummer des Verkäufers 9780367532468
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 388. Bestandsnummer des Verkäufers 26390131056
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44132302
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 388. Bestandsnummer des Verkäufers 18390131066
Anzahl: 4 verfügbar
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology.The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers.Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work.Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book.A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., theres an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree).Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance. This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9780367532468
Anzahl: 1 verfügbar