Over the years there has been a large increase in the functionality available on a single integrated circuit. This has been mainly achieved by a continuous drive towards smaller feature sizes, larger dies, and better packing efficiency. However, this greater functionality has also resulted in substantial increases in the capital investment needed to build fabrication facilities. Given such a high level of investment, it is critical for IC manufacturers to reduce manufacturing costs and get a better return on their investment. The most obvious method of reducing the manufacturing cost per die is to improve manufacturing yield.
Modern VLSI research and engineering (which includes design manufacturing and testing) encompasses a very broad range of disciplines such as chemistry, physics, material science, circuit design, mathematics and computer science. Due to this diversity, the VLSI arena has become fractured into a number of separate sub-domains with little or no interaction between them. This is the case with the relationships between testing and manufacturing.
From Contamination to Defects, Faults and Yield Loss: Simulation and Applications focuses on the core of the interface between manufacturing and testing, i.e., the contamination-defect-fault relationship. The understanding of this relationship can lead to better solutions of many manufacturing and testing problems.
Failure mechanism models are developed and presented which can be used to accurately estimate probability of different failures for a given IC. This information is critical in solving key yield-related applications such as failure analysis, fault modeling and design manufacturing.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Over the years there has been a large increase in the functionality available on a single integrated circuit. This has been mainly achieved by a continuous drive towards smaller feature sizes, larger dies, and better packing efficiency. However, this greater functionality has also resulted in substantial increases in the capital investment needed to build fabrication facilities. Given such a high level of investment, it is critical for IC manufacturers to reduce manufacturing costs and get a better return on their investment. The most obvious method of reducing the manufacturing cost per die is to improve manufacturing yield.
Modern VLSI research and engineering (which includes design manufacturing and testing) encompasses a very broad range of disciplines such as chemistry, physics, material science, circuit design, mathematics and computer science. Due to this diversity, the VLSI arena has become fractured into a number of separate sub-domains with little or no interaction between them. This is the case with the relationships between testing and manufacturing.
From Contamination to Defects, Faults and Yield Loss: Simulation and Applications focuses on the core of the interface between manufacturing and testing, i.e., the contamination-defect-fault relationship. The understanding of this relationship can lead to better solutions of many manufacturing and testing problems.
Failure mechanism models are developed and presented which can be used to accurately estimate probability of different failures for a given IC. This information is critical in solving key yield-related applications such as failure analysis, fault modeling and design manufacturing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,86 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Good. 150 pp., Hardcover, ex library else text clean and binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1126563
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-156760
Anzahl: 1 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-118563
Anzahl: 1 verfügbar
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHAK118563
Anzahl: 1 verfügbar
Anbieter: BennettBooksLtd, San Diego, NV, USA
hardcover. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-0792397142
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 758098-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. Over the years there has been a large increase in the functionality available on a single integrated circuit. This has been mainly achieved by a continuous drive towards smaller feature sizes, larger dies and better packing efficiency. However, this greater functionality has also resulted in substantial increases in the capital investment needed to build fabrication facilities. Given such a high level of investment, it is critical for IC manufacturers to reduce manufacturing costs and get a better return on their investment. The most obvious method of reducing the manufacturing cost per die is to improve manufacturing yield. Modern VLSI research and engineering (which includes design manufacturing and testing) encompasses a very broad range of disciplines such as chemistry, physics, material science, circuit design, mathematics and computer science. Due to this diversity, the VLSI arena has become fractured into a number of separate sub-domains with little or no interaction between them. This is the case with the relationships between testing and manufacturing.This volume focuses on the core of the interface between manufacturing and testing - the contamination-defect-fault relationship. The understanding of this relationship can lead to better solutions of many manufacturing and testing problems. Failure mechanism models are developed and presented which can be used to accurately estimate the probability of different failures for a given IC. This information is critical in solving key yield-related applications such as failure analysis, fault modelling and design manufacturing. Given such a high level of investment, it is critical for IC manufacturers to reduce manufacturing costs and get a better return on their investment. The most obvious method of reducing the manufacturing cost per die is to improve manufacturing yield. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780792397144
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 758098
Anzahl: Mehr als 20 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 3022620/202
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792397144_new
Anzahl: Mehr als 20 verfügbar