This book looks at conversational search in intelligent dialogue systems, as it investigates and addresses the challenges pertinent to effective context incorporation in conversational question answering (ConvQA). The authors explore the possibility of designing a scalable Conversational Question Answering Agent that can handle the challenges of incomplete/ambiguous questions, better able to relate to co-references to cope with the problems of effective weights and optimal threshold selection in vehicular networks. A fundamental emphasis is the understanding of ambiguous follow-up questions and the generation of contextual and question entities to fill in the missing information gaps. Key topics are studied, such as ‘hard history selection’ to filter out the context that is not relevant and performing a re-ranking of the selected turns based on their significance to answer the question as a part of the soft history selection process.
This book aims to demonstrate that the history selection and modelling approaches proposed can effectively improve the performance of ConvQA models in different settings. The proposed models are compared with the state-of-the-art vis-à-vis different conversational datasets and provide new insights into conversational information retrieval. Through a systematic study of structured representations, entity-aware history selection, and open-domain passage retrieval using contrastive learning, this book presents a robust framework for advancing multi-turn QA systems.
It is an essential resource for researchers, practitioners, and graduate students working at the intersection of NLP, dialogue systems, and intelligent information access.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Munazza Zaib is currently a Postdoctoral Research Fellow at the Department of Human Centred Computing, Faculty of Information Technology, Monash University, Australia.
Quan Z. Sheng is a Distinguished Professor and Head of School of Computing at Macquarie University, Australia. ). He is the recipient of the AMiner Most Influential Scholar Award on IoT (2007-2017), ARC (Australian Research Council) Future Fellowship (2014).
Wei Emma Zhang is Associate Head of People and Culture at the School of Computer and Mathematical Sciences, and a researcher at the Australian Institute for Machine Learning, the University of Adelaide.
Adnan Mahmood is a Lecturer in Computing – IoT and Networking at the School of Computing, Macquarie University, Sydney.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781032970844
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 409689513
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 50553503-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781032970844
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This book looks at conversational search in intelligent dialogue systems, as it investigates and addresses the challenges pertinent to effective context incorporation in conversational question answering (ConvQA). The authors explore the possibility of designing a scalable Conversational Question Answering Agent that can handle the challenges of incomplete/ambiguous questions, better able to relate to co-references to cope with the problems of effective weights and optimal threshold selection in vehicular networks. A fundamental emphasis is the understanding of ambiguous follow-up questions and the generation of contextual and question entities to fill in the missing information gaps. Key topics are studied, such as hard history selection to filter out the context that is not relevant and performing a re-ranking of the selected turns based on their significance to answer the question as a part of the soft history selection process.This book aims to demonstrate that the history selection and modelling approaches proposed can effectively improve the performance of ConvQA models in different settings. The proposed models are compared with the state-of-the-art vis-a-vis different conversational datasets and provide new insights into conversational information retrieval. Through a systematic study of structured representations, entity-aware history selection, and open-domain passage retrieval using contrastive learning, this book presents a robust framework for advancing multi-turn QA systems.It is an essential resource for researchers, practitioners, and graduate students working at the intersection of NLP, dialogue systems, and intelligent information access. This book looks at conversational search in intelligent dialogue systems, as it investigates and addresses the challenges pertinent to effective context incorporation in conversational question answering (ConvQA). This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781032970844
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781032970844
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 50553503-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 50553503
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9781032970844
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 50553503
Anzahl: Mehr als 20 verfügbar