Verwandte Artikel zu Optimizing Edge and Fog Computing Applications with...

Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms - Hardcover

 
9781041003540: Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms

Inhaltsangabe

Fog and edge computing are two paradigms that have emerged to address the challenges associated with processing and managing data in the era of the Internet of Things (IoT). Both models involve moving computation and data storage closer to the source of data generation, but they have subtle differences in their architectures and scopes. These differences are one of the subjects covered in Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms. Other subjects covered in the book include:

  • Designing machine learning (ML) algorithms that are aware of the resource constraints at the edge and fog layers ensures efficient use of computational resources
  • Resource-aware models using ML and deep leaning models that can adapt their complexity based on available resources and balancing the load, allowing for better scalability
  • Implementing secure ML algorithms and models to prevent adversarial attacks and ensure data privacy
  • Securing the communication channels between edge devices, fog nodes, and the cloud to protect model updates and inferences
  • Kubernetes container orchestration for fog computing
  • Federated learning that enables model training across multiple edge devices without the need to share raw data

The book discusses how resource optimization in fog and edge computing is crucial for achieving efficient and effective processing of data close to the source. It explains how both fog and edge computing aim to enhance system performance, reduce latency, and improve overall resource utilization. It examines the combination of intelligent algorithms, effective communication protocols, and dynamic management strategies required to adapt to changing conditions and workload demands. The book explains how security in fog and edge computing requires a combination of technological measures, advanced techniques, user awareness, and organizational policies to effectively protect data and systems from evolving security threats. Finally, it looks forward with coverage of ongoing research and development, which are essential for refining optimization techniques and ensuring the scalability and sustainability of fog and edge computing environments.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Madhusudhan H S is an associate professor in the Department of Computer Science and Engineering at Vidyavardhaka College of Engineering, Mysuru, India.

Punit Gupta is an associate professor in the Department of Computer and Communication Engineering at Pandit Deendayal Energy University, Gujarat, India.

Dinesh Kumar Saini is a full professor at the School of Computing and Information Technology, Manipal University, Jaipur, India.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 10,23 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Optimizing Edge and Fog Computing Applications with...

Beispielbild für diese ISBN

Verlag: Auerbach Publications, 2025
ISBN 10: 1041003544 ISBN 13: 9781041003540
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 409205028

Verkäufer kontaktieren

Neu kaufen

EUR 168,34
Währung umrechnen
Versand: EUR 10,23
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Foto des Verkäufers

Madhusudhan H S
ISBN 10: 1041003544 ISBN 13: 9781041003540
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - The book covers resource management techniques to enhance resource optimization, security mechanisms and predictive computing in fog and edge computing. Machine learning (ML) can leverage the distributed nature of these fog and edge architectures to perform computation and analysis closer to the data source. Bestandsnummer des Verkäufers 9781041003540

Verkäufer kontaktieren

Neu kaufen

EUR 190,78
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Auerbach Publications, 2025
ISBN 10: 1041003544 ISBN 13: 9781041003540
Neu Hardcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 18403982065

Verkäufer kontaktieren

Neu kaufen

EUR 189,51
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Auerbach Publications, 2025
ISBN 10: 1041003544 ISBN 13: 9781041003540
Neu Hardcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26403982075

Verkäufer kontaktieren

Neu kaufen

EUR 184,79
Währung umrechnen
Versand: EUR 7,70
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Madhusudhan H.S.
ISBN 10: 1041003544 ISBN 13: 9781041003540
Neu Hardcover

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. Fog and edge computing are two paradigms that have emerged to address the challenges associated with processing and managing data in the era of the Internet of Things (IoT). Both models involve moving computation and data storage closer to the source of data generation, but they have subtle differences in their architectures and scopes. These differences are one of the subjects covered in Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms. Other subjects covered in the book include:Designing machine learning (ML) algorithms that are aware of the resource constraints at the edge and fog layers ensures efficient use of computational resourcesResource-aware models using ML and deep leaning models that can adapt their complexity based on available resources and balancing the load, allowing for better scalabilityImplementing secure ML algorithms and models to prevent adversarial attacks and ensure data privacySecuring the communication channels between edge devices, fog nodes, and the cloud to protect model updates and inferencesKubernetes container orchestration for fog computingFederated learning that enables model training across multiple edge devices without the need to share raw dataThe book discusses how resource optimization in fog and edge computing is crucial for achieving efficient and effective processing of data close to the source. It explains how both fog and edge computing aim to enhance system performance, reduce latency, and improve overall resource utilization. It examines the combination of intelligent algorithms, effective communication protocols, and dynamic management strategies required to adapt to changing conditions and workload demands. The book explains how security in fog and edge computing requires a combination of technological measures, advanced techniques, user awareness, and organizational policies to effectively protect data and systems from evolving security threats. Finally, it looks forward with coverage of ongoing research and development, which are essential for refining optimization techniques and ensuring the scalability and sustainability of fog and edge computing environments. The book covers resource management techniques to enhance resource optimization, security mechanisms and predictive computing in fog and edge computing. Machine learning (ML) can leverage the distributed nature of these fog and edge architectures to perform computation and analysis closer to the data source. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781041003540

Verkäufer kontaktieren

Neu kaufen

EUR 195,29
Währung umrechnen
Versand: EUR 28,90
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Madhusudhan H.S.
ISBN 10: 1041003544 ISBN 13: 9781041003540
Neu Hardcover

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. Fog and edge computing are two paradigms that have emerged to address the challenges associated with processing and managing data in the era of the Internet of Things (IoT). Both models involve moving computation and data storage closer to the source of data generation, but they have subtle differences in their architectures and scopes. These differences are one of the subjects covered in Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms. Other subjects covered in the book include:Designing machine learning (ML) algorithms that are aware of the resource constraints at the edge and fog layers ensures efficient use of computational resourcesResource-aware models using ML and deep leaning models that can adapt their complexity based on available resources and balancing the load, allowing for better scalabilityImplementing secure ML algorithms and models to prevent adversarial attacks and ensure data privacySecuring the communication channels between edge devices, fog nodes, and the cloud to protect model updates and inferencesKubernetes container orchestration for fog computingFederated learning that enables model training across multiple edge devices without the need to share raw dataThe book discusses how resource optimization in fog and edge computing is crucial for achieving efficient and effective processing of data close to the source. It explains how both fog and edge computing aim to enhance system performance, reduce latency, and improve overall resource utilization. It examines the combination of intelligent algorithms, effective communication protocols, and dynamic management strategies required to adapt to changing conditions and workload demands. The book explains how security in fog and edge computing requires a combination of technological measures, advanced techniques, user awareness, and organizational policies to effectively protect data and systems from evolving security threats. Finally, it looks forward with coverage of ongoing research and development, which are essential for refining optimization techniques and ensuring the scalability and sustainability of fog and edge computing environments. The book covers resource management techniques to enhance resource optimization, security mechanisms and predictive computing in fog and edge computing. Machine learning (ML) can leverage the distributed nature of these fog and edge architectures to perform computation and analysis closer to the data source. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781041003540

Verkäufer kontaktieren

Neu kaufen

EUR 176,06
Währung umrechnen
Versand: EUR 64,20
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb