This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Shinichi Nakajima is a senior researcher at Technische Universität Berlin. His research interests include the theory and applications of machine learning, and he has published papers at numerous conferences and in journals such as the Journal of Machine Learning Research, the Machine Learning Journal, Neural Computation, and IEEE Transactions on Signal Processing. He currently serves as an area chair for NIPS and an action Editor for Digital Signal Processing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 48407249-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Variational Bayesian Learning Theory. Book. Bestandsnummer des Verkäufers BBS-9781107430761
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781107430761
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48407249
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781107430761
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781107430761_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-GRD-9781107430761
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 559 pages. 6.00x1.25x9.00 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1107430763
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 48407249-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2025. paperback. . . . . . Bestandsnummer des Verkäufers V9781107430761
Anzahl: 2 verfügbar