Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Speedyhen, London, Vereinigtes Königreich
EUR 44,70
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: NEW.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 53,82
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 58,40
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 52,42
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press 2/6/2025, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 51,41
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Variational Bayesian Learning Theory 1.79. Book.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 59,47
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
EUR 59,77
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. 2025. paperback. . . . . .
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 52,84
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 559 pages. 6.00x1.25x9.00 inches. In Stock.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
EUR 57,81
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 48,98
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 58,41
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, GB, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 67,31
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 53,81
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, GB, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 72,32
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 74,61
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. 2025. paperback. . . . . . Books ship from the US and Ireland.
Verlag: Cambridge University Press, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 73,06
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 559 pages. 6.00x1.25x9.00 inches. In Stock.
Verlag: Cambridge University Press, Cambridge, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 55,43
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Cambridge University Press, Cambridge, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 78,61
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Cambridge University Press, Cambridge, 2025
ISBN 10: 1107430763 ISBN 13: 9781107430761
Sprache: Englisch
Anbieter: Grand Eagle Retail, Mason, OH, USA
EUR 51,34
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.