DEMYSTIFYING DEEP LEARNING
Discover how to train Deep Learning models by learning how to build real Deep Learning software libraries and verification software!
The study of Deep Learning and Artificial Neural Networks (ANN) is a significant subfield of artificial intelligence (AI) that can be found within numerous fields: medicine, law, financial services, and science, for example. Just as the robot revolution threatened blue-collar jobs in the 1970s, so now the AI revolution promises a new era of productivity for white collar jobs. Important tasks have begun being taken over by ANNs, from disease detection and prevention, to reading and supporting legal contracts, to understanding experimental data, model protein folding, and hurricane modeling. AI is everywhere―on the news, in think tanks, and occupies government policy makers all over the world ―and ANNs often provide the backbone for AI.
Relying on an informal and succinct approach, Demystifying Deep Learning is a useful tool to learn the necessary steps to implement ANN algorithms by using both a software library applying neural network training and verification software. The volume offers explanations of how real ANNs work, and includes 6 practical examples that demonstrate in real code how to build ANNs and the datasets they need in their implementation, available in open-source to ensure practical usage. This approachable book follows ANN techniques that are used every day as they adapt to natural language processing, image recognition, problem solving, and generative applications. This volume is an important introduction to the field, equipping the reader for more advanced study.
Demystifying Deep Learning readers will also find:
Demystifying Deep Learning is ideal for engineers and professionals that need to learn and understand ANNs in their work. It is also a helpful text for advanced undergraduates to get a solid grounding on the topic.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Douglas J. Santry, PhD, is a lecturer in Computer Science at the University of Kent, UK. Dr. Santry obtained his PhD from the University of Cambridge. Prior to his current position, he worked extenstively as an important figure in industry with Apple Computer Corp, NetApp and Goldman Sachs.
Discover how to train Deep Learning models by learning how to build real Deep Learning software libraries and verification software!
The study of Deep Learning and Artificial Neural Networks (ANN) is a significant subfield of artificial intelligence (AI) that can be found within numerous fields: medicine, law, financial services, and science, for example. Just as the robot revolution threatened blue-collar jobs in the 1970s, so now the AI revolution promises a new era of productivity for white collar jobs. Important tasks have begun being taken over by ANNs, from disease detection and prevention, to reading and supporting legal contracts, to understanding experimental data, model protein folding, and hurricane modeling. AI is everywhere―on the news, in think tanks, and occupies government policy makers all over the world ―and ANNs often provide the backbone for AI.
Relying on an informal and succinct approach, Demystifying Deep Learning is a useful tool to learn the necessary steps to implement ANN algorithms by using both a software library applying neural network training and verification software. The volume offers explanations of how real ANNs work, and includes 6 practical examples that demonstrate in real code how to build ANNs and the datasets they need in their implementation, available in open-source to ensure practical usage. This approachable book follows ANN techniques that are used every day as they adapt to natural language processing, image recognition, problem solving, and generative applications. This volume is an important introduction to the field, equipping the reader for more advanced study.
Demystifying Deep Learning readers will also find:
Demystifying Deep Learning is ideal for engineers and professionals that need to learn and understand ANNs in their work. It is also a helpful text for advanced undergraduates to get a solid grounding on the topic.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 399974586
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 45669604-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18396402543
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45669604
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781394205608_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 45669604-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45669604
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. DEMYSTIFYING DEEP LEARNING Discover how to train Deep Learning models by learning how to build real Deep Learning software libraries and verification software! The study of Deep Learning and Artificial Neural Networks (ANN) is a significant subfield of artificial intelligence (AI) that can be found within numerous fields: medicine, law, financial services, and science, for example. Just as the robot revolution threatened blue-collar jobs in the 1970s, so now the AI revolution promises a new era of productivity for white collar jobs. Important tasks have begun being taken over by ANNs, from disease detection and prevention, to reading and supporting legal contracts, to understanding experimental data, model protein folding, and hurricane modeling. AI is everywhereon the news, in think tanks, and occupies government policy makers all over the world and ANNs often provide the backbone for AI. Relying on an informal and succinct approach, Demystifying Deep Learning is a useful tool to learn the necessary steps to implement ANN algorithms by using both a software library applying neural network training and verification software. The volume offers explanations of how real ANNs work, and includes 6 practical examples that demonstrate in real code how to build ANNs and the datasets they need in their implementation, available in open-source to ensure practical usage. This approachable book follows ANN techniques that are used every day as they adapt to natural language processing, image recognition, problem solving, and generative applications. This volume is an important introduction to the field, equipping the reader for more advanced study. Demystifying Deep Learning readers will also find: A volume that emphasizes the importance of classificationDiscussion of why ANN libraries, such as Tensor Flow and Pytorch, are written in C++ rather than PythonEach chapter concludes with a Projects page to promote students experimenting with real code A supporting library of software to accompany the book at An approachable explanation of how generative AI, such as generative adversarial networks (GAN), really work. An accessible motivation and elucidation of how transformers, the basis of large language models (LLM) such as ChatGPT, work. Demystifying Deep Learning is ideal for engineers and professionals that need to learn and understand ANNs in their work. It is also a helpful text for advanced undergraduates to get a solid grounding on the topic. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781394205608
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 256 pages. 9.00x6.00x0.63 inches. In Stock. Bestandsnummer des Verkäufers x-1394205600
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. I recently read DEMYSTIFYING DEEP LEARNING and it really exceeded my expectations! It is incredibly comprehensive and well organized with plenty of references to examples available on the book s website. The amount of knowledge in the book makes it a must-. Bestandsnummer des Verkäufers 857731701
Anzahl: Mehr als 20 verfügbar