Cellular neurobiology has been transformed in the past decade by new technologies and fundamental discoveries. One result is an enormous increase in our understanding of how ion channels function in nerve and muscle cells and a widening perspective on the role of ion channels in non-neuronal cell physiology and development. Patch clamp techniques now permit direct observation of the transitions between functional confor mations of individual ion channels in their native membrane. Recombinant DNA techniques are being used to determine the primary structure of ion channel proteins and to test hypotheses about channel conformations, sites of grating and modulation, and the basis of ion selectivity. At the same time, biochemical techniques have revealed intricate signalling systems in side cells, involving second messengers such as calcium, phospholipids and cyclic nucleotides, which interface with the external milieu through GTP binding proteins and regulate cell metabolism by altering protein phos phorylation. This panorama of second messenger systems has greatly increas ed our application for their potential role in regulating ion channel function. We now recognize that ion channels are much more complicated than we once thought, and more interesting. They are not simply isolated macro molecules in the membrane, gated directly by depolarization or trans mitter binding to open briefly at a fixed conductance and then close or inactivate. Instead, individual channels now appear to have many open and closed states that are regulated independently by voltage and transmitters.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Cellular neurobiology has been transformed in the past decade by new technologies and fundamental discoveries. One result is an enormous increase in our understanding of how ion channels function in nerve and muscle cells and a widening perspective on the role of ion channels in non-neuronal cell physiology and development. Patch clamp techniques now permit direct observation of the transitions between functional confor mations of individual ion channels in their native membrane. Recombinant DNA techniques are being used to determine the primary structure of ion channel proteins and to test hypotheses about channel conformations, sites of grating and modulation, and the basis of ion selectivity. At the same time, biochemical techniques have revealed intricate signalling systems in side cells, involving second messengers such as calcium, phospholipids and cyclic nucleotides, which interface with the external milieu through GTP binding proteins and regulate cell metabolism by altering protein phos phorylation. This panorama of second messenger systems has greatly increas ed our application for their potential role in regulating ion channel function. We now recognize that ion channels are much more complicated than we once thought, and more interesting. They are not simply isolated macro molecules in the membrane, gated directly by depolarization or trans mitter binding to open briefly at a fixed conductance and then close or inactivate. Instead, individual channels now appear to have many open and closed states that are regulated independently by voltage and transmitters.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030029578
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781461282730_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781461282730
Anzahl: 10 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Cellular neurobiology has been transformed in the past decade by new technologies and fundamental discoveries. One result is an enormous increase in our understanding of how ion channels function in nerve and muscle cells and a widening perspective on the role of ion channels in non-neuronal cell physiology and development. Patch clamp techniques now permit direct observation of the transitions between functional confor mations of individual ion channels in their native membrane. Recombinant DNA techniques are being used to determine the primary structure of ion channel proteins and to test hypotheses about channel conformations, sites of grating and modulation, and the basis of ion selectivity. At the same time, biochemical techniques have revealed intricate signalling systems in side cells, involving second messengers such as calcium, phospholipids and cyclic nucleotides, which interface with the external milieu through GTP binding proteins and regulate cell metabolism by altering protein phos phorylation. This panorama of second messenger systems has greatly increas ed our application for their potential role in regulating ion channel function. We now recognize that ion channels are much more complicated than we once thought, and more interesting. They are not simply isolated macro molecules in the membrane, gated directly by depolarization or trans mitter binding to open briefly at a fixed conductance and then close or inactivate. Instead, individual channels now appear to have many open and closed states that are regulated independently by voltage and transmitters. 464 pp. Englisch. Bestandsnummer des Verkäufers 9781461282730
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 464. Bestandsnummer des Verkäufers 2697566715
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 464 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 94830628
Anzahl: 4 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 823. Bestandsnummer des Verkäufers C9781461282730
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 464. Bestandsnummer des Verkäufers 1897566705
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Cellular neurobiology has been transformed in the past decade by new technologies and fundamental discoveries. One result is an enormous increase in our understanding of how ion channels function in nerve and muscle cells and a widening perspective on the r. Bestandsnummer des Verkäufers 4190853
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Cellular neurobiology has been transformed in the past decade by new technologies and fundamental discoveries. One result is an enormous increase in our understanding of how ion channels function in nerve and muscle cells and a widening perspective on the role of ion channels in non-neuronal cell physiology and development. Patch clamp techniques now permit direct observation of the transitions between functional confor mations of individual ion channels in their native membrane. Recombinant DNA techniques are being used to determine the primary structure of ion channel proteins and to test hypotheses about channel conformations, sites of grating and modulation, and the basis of ion selectivity. At the same time, biochemical techniques have revealed intricate signalling systems in side cells, involving second messengers such as calcium, phospholipids and cyclic nucleotides, which interface with the external milieu through GTP binding proteins and regulate cell metabolism by altering protein phos phorylation. This panorama of second messenger systems has greatly increas ed our application for their potential role in regulating ion channel function. We now recognize that ion channels are much more complicated than we once thought, and more interesting. They are not simply isolated macro molecules in the membrane, gated directly by depolarization or trans mitter binding to open briefly at a fixed conductance and then close or inactivate. Instead, individual channels now appear to have many open and closed states that are regulated independently by voltage and transmitters.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 464 pp. Englisch. Bestandsnummer des Verkäufers 9781461282730
Anzahl: 1 verfügbar