AI models can become so complex that even experts have difficulty understanding them―and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function.
InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models.
How deep learning models produce their results is often a complete mystery, even to their creators. These AI"black boxes" can hide unknown issues―including data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU's "right to explanation." State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI's methods and to better detect when it has made a mistake.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ajay Thampi is a machine learning engineer at a large tech company primarily focused on responsible AI and fairness. He holds a PhD and his research was focused on signal processing and machine learning. He has published papers at leading conferences and journals on reinforcement learning, convex optimization, and classical machine learning techniques applied to 5G cellular networks.
Interpretable AI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting-edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and open source libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you to identify the patterns your model has learned, and presents best practices for building fair and unbiased models. When you're done, you'll be able to improve your AI's performance during training, and build robust systems that counter act errors from bias, data leakage, and concept drift.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 2,27 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: World of Books (was SecondSale), Montgomery, IL, USA
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00079525897
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43994855-n
Anzahl: 1 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 9781617297649
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43994855
Anzahl: 1 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: As New. Unread copy in mint condition. Bestandsnummer des Verkäufers SS9781617297649
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781617297649
Anzahl: 15 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. AI models can become so complex that even experts have difficulty understanding them-and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function. InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models. How deep learning models produce their results is often a complete mystery, even to their creators. These AI"black boxes" can hide unknown issues-including data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU's "right to explanation." State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI's methods and to better detect when it has made a mistake. Bestandsnummer des Verkäufers LU-9781617297649
Anzahl: 10 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781617297649
Anzahl: 15 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. AI models can become so complex that even experts have difficulty understanding themand forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function. InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models. How deep learning models produce their results is often a complete mystery, even to their creators. These AI"black boxes" can hide unknown issuesincluding data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU's "right to explanation." State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI's methods and to better detect when it has made a mistake. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781617297649
Anzahl: 1 verfügbar
Anbieter: Toscana Books, AUSTIN, TX, USA
Paperback. Zustand: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Bestandsnummer des Verkäufers Scanned161729764X
Anzahl: 1 verfügbar