Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code!
You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learning―and the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.
Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ben Wilson has worked as a professional data scientist for more than ten years. He currently works as a resident solutions architect at Databricks,where he focuses on machine learning production architecture with companies ranging from 5-person startups to global Fortune 100. Ben is the creator and lead developer of the Databricks Labs AutoML project, a Scala-and Python-based toolkit that simplifies machine learning feature engineering, model tuning, and pipeline-enabled modelling.
Machine Learning Engineering in Action is a roadmap to delivering successful machine learning projects. It teaches you to adopt an efficient, sustainable, and goal-driven approach that author Ben Wilson has developed over a decade of data science experience. Every method in this book has been used to solve a breakdown in a real-world project, and is illustrated with production-ready source code and easily reproducible examples.
You'll learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You'll even discover when not to use machine learning--and the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,90 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorBen Wilson has worked as a professional data scientist for more than ten years. He currently works as a resident solutions architect at Databricks,where he focuses on machine learning production architectur. Bestandsnummer des Verkäufers 497928940
Anzahl: Mehr als 20 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1617298719-8-1
Anzahl: 1 verfügbar
Anbieter: medimops, Berlin, Deutschland
Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Bestandsnummer des Verkäufers M01617298719-V
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781617298714
Anzahl: 15 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9781617298714
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43786890-n
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43786890
Anzahl: 5 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781617298714_new
Anzahl: 3 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Field-tested tips, tricks, and design patterns for building MachineLearning projects that are deployable, maintainable, and secure from concept toproduction.In Machine Learning Engineering inAction, you will learn: Bestandsnummer des Verkäufers 9781617298714
Anzahl: 1 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code! You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learning-and the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike. Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt. Bestandsnummer des Verkäufers LU-9781617298714
Anzahl: 2 verfügbar