Graphs are the natural way to understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with practical examples and concrete advice on implementation and deployment.
In Graph Algorithms for Data Science you will learn:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Tomaž Bratanič is a network scientist at heart, working at the intersection of graphs and machine learning. He has applied these graph techniques to projects in various domains including fraud detection, biomedicine, business-oriented analytics, and recommendations.
Graphs are the natural way to understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with practical examples and concrete advice on implementation and deployment. In Graph Algorithms for Data Science you will learn:
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: HPB-Red, Dallas, TX, USA
paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_401758814
Anzahl: 1 verfügbar
Anbieter: Goodwill Southern California, Los Angeles, CA, USA
Zustand: acceptable. Bestandsnummer des Verkäufers 4CJULU001IZV
Anzahl: 1 verfügbar
Anbieter: Goodwill Books, Hillsboro, OR, USA
Zustand: good. Signs of wear and consistent use. Bestandsnummer des Verkäufers 3IIT4Q004ISB_ns
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 45630749-n
Anzahl: 19 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45630749
Anzahl: 19 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 9781617299469
Anzahl: Mehr als 20 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: As New. Unread copy in mint condition. Bestandsnummer des Verkäufers SS9781617299469
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781617299469
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781617299469
Anzahl: 15 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Graphs are the natural way to understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with practical examples and concrete advice on implementation and deployment. In Graph Algorithms for Data Science you will learn: Labeled-property graph modelingConstructing a graph from structured data such as CSV or SQLNLP techniques to construct a graph from unstructured dataCypher query language syntax to manipulate data and extract insightsSocial network analysis algorithms like PageRank and community detectionHow to translate graph structure to a ML model input with node embedding modelsUsing graph features in node classification and link prediction workflows Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications like machine learning, fraud detection, and business data analysis. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. You don't need any graph experience to start benefiting from this insightful guide. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects. about the technology Graphs reveal the relationships in your data. Tracking these interlinking connections reveals new insights and influences and lets you analyze each data point as part of a larger whole. This interconnected data is perfect for machine learning, as well as analyzing social networks, communities, and even product recommendations. about the book Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. The book explores common and useful graph algorithms like PageRank and community detection/clustering algorithms. Each new algorithm you learn is instantly put into action to complete a hands-on data project, including modeling a social network! Finally, you'll learn how to utilize graphs to upgrade your machine learning, including utilizing node embedding models and graph neural networks. Bestandsnummer des Verkäufers LU-9781617299469
Anzahl: 1 verfügbar