Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models.
In Engineering Deep Learning Systems you will learn how to:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Chi Wang is a principal software developer in the Salesforce Einstein group where he builds the deep learning platform for millions of Salesforce customers. Previously, he worked at Microsoft Bing and Azure on building large-scale distributed systems. Chi has filed six patents, mostly in deep learning systems.
Donald Szeto was the co-founder and CTO of PredictionIO, a startup that aimed to help democratize and accelerate the adoption of machine learning. PredictionIO was acquired by Salesforce, where he continued his work on machine learning and deep learning systems. Donald is currently investing in, advising, and mentoring technology startups.
Engineering Deep Learning Systems teaches you to design and implement an automated platform to support creating, training, and maintaining deep learning models. In it, you'll learn just enough about deep learning to understand the needs of the data scientists who will be using your system. You'll learn to gather requirements, translate them into system component design choices, and integrate those components into a cohesive whole. A complete example system and insightful exercises help you build an intuitive understanding of DL system design.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,81 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,04 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1633439860-11-1
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.1. Bestandsnummer des Verkäufers G1633439860I3N00
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 2 working days. 218. Bestandsnummer des Verkäufers B9781633439863
Anzahl: 3 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It's full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You'll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system's platform differs from other distributed systems. By mastering the core ideas in this book, you'll be able to support deep learning systems in a way that's fast, repeatable, and reliable. Bestandsnummer des Verkäufers LU-9781633439863
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781633439863
Anzahl: 15 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers PB-9781633439863
Anzahl: 15 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: As New. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1633439860-10-1
Anzahl: 2 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It's full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You'll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system's platform differs from other distributed systems. By mastering the core ideas in this book, you'll be able to support deep learning systems in a way that's fast, repeatable, and reliable. Bestandsnummer des Verkäufers LU-9781633439863
Anzahl: 2 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9781633439863
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44845777
Anzahl: Mehr als 20 verfügbar