Verwandte Artikel zu Numerical Integration of Space Fractional Partial Differenti...

Numerical Integration of Space Fractional Partial Differential Equations: Vol 2 - Applications from Classical Integer PDEs (Synthesis Lectures on Mathematics and Statistics) - Softcover

 
9781681732091: Numerical Integration of Space Fractional Partial Differential Equations: Vol 2 - Applications from Classical Integer PDEs (Synthesis Lectures on Mathematics and Statistics)

Inhaltsangabe

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: •Vol 1: Introduction to Algorithms and Computer Coding in R •Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are: •Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions •Fisher-Kolmogorov SFPDE •Burgers SFPDE •Fokker-Planck SFPDE •Burgers-Huxley SFPDE •Fitzhugh-Nagumo SFPDE. These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order ?? with 1 ≤ ?? ≤ 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume. The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume. The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Fast Shipping - Safe and Secure...
Diesen Artikel anzeigen

EUR 64,29 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781681732718: Numerical Integration of Space Fractional Partial Differential Equations: Vol 2 - Applications from Classical Integer Pdes (Synthesis Lectures on Mathematics and Statistics)

Vorgestellte Ausgabe

ISBN 10:  1681732718 ISBN 13:  9781681732718
Verlag: Morgan & Claypool, 2017
Hardcover

Suchergebnisse für Numerical Integration of Space Fractional Partial Differenti...

Beispielbild für diese ISBN

Salehi, Younes,Schiesser, William E.
ISBN 10: 1681732092 ISBN 13: 9781681732091
Gebraucht paperback

Anbieter: suffolkbooks, Center moriches, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Fast Shipping - Safe and Secure 7 days a week! Bestandsnummer des Verkäufers 3TWOWA001OQ6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 14,84
Währung umrechnen
Versand: EUR 64,29
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb