EUR 17,01
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Good. No Jacket. Former library book; Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.95.
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
EUR 12,95
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Fine. First edition, first printing, 257 pp., Paperback, a TINY bit of discoloration to fore edge else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
EUR 48,37
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer New York, Springer US, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 58,39
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 60,32
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 59,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 47,90
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
EUR 75,17
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 280.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 76,76
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 280 pages. 9.10x5.90x0.50 inches. In Stock.
EUR 51,86
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer New York, Springer US Nov 1984, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 53,49
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f ¿ F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u ¿ DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 280 pp. Englisch.
Verlag: Springer-Verlag New York Inc., 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 67,54
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 427.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 80,13
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND pp. 280.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 76,59
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 280 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Verlag: Springer New York Nov 1984, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 96,29
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation. 280 pp. Englisch.