Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Fine.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Anbieter: California Books, Miami, FL, USA
Zustand: New.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 67,56
Anzahl: 3 verfügbar
In den WarenkorbZustand: New.
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 74,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 67,98
Anzahl: 10 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 71,04
Anzahl: 10 verfügbar
In den WarenkorbZustand: New.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 71,05
Anzahl: 1 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 93,00
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 322 pages. 9.18x6.12x9.21 inches. In Stock.
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 167,35
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 176,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 176,22
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 178,49
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 193,34
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 213,19
Anzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: New. New. book.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 213,71
Anzahl: 1 verfügbar
In den WarenkorbHardback. Zustand: New. New copy - Usually dispatched within 4 working days.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 243,20
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 322 pages. 9.19x6.13x0.79 inches. In Stock.
Sprache: Englisch
Verlag: Taylor & Francis Ltd, London, 2025
ISBN 10: 1032433655 ISBN 13: 9781032433653
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments.This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions. This book provides comprehensive research and explores the different applications of data science and machine learning in subsurface engineering. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Sprache: Englisch
Verlag: Taylor & Francis Ltd, London, 2025
ISBN 10: 1032433655 ISBN 13: 9781032433653
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 80,53
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments.This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions. This book provides comprehensive research and explores the different applications of data science and machine learning in subsurface engineering. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Sprache: Englisch
Verlag: Taylor & Francis Ltd, London, 2025
ISBN 10: 1032433655 ISBN 13: 9781032433653
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Paperback. Zustand: new. Paperback. This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments.This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions. This book provides comprehensive research and explores the different applications of data science and machine learning in subsurface engineering. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 171,78
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Data Science and Machine Learning Applications in Subsurface Engineering | Daniel Asante Otchere | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2025 | CRC Press | EAN 9781032433653 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments.