Anbieter: SpringBooks, Berlin, Deutschland
Erstausgabe
Hardcover. Zustand: Very Good. 1. Auflage. unread, some shelfwear.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 157,52
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 147,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 147,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 157,92
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st ed. 2020 edition NO-PA16APR2015-KAP.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 178,92
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Zustand: New.
Anbieter: California Books, Miami, FL, USA
Zustand: New.
Sprache: Englisch
Verlag: Springer Verlag, Singapore, SG, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 212,73
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. 2020 ed. This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Accelerated Optimization for Machine Learning | First-Order Algorithms | Zhouchen Lin (u. a.) | Taschenbuch | xxiv | Englisch | 2021 | Springer Singapore | EAN 9789811529122 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Sprache: Englisch
Verlag: Springer Nature Singapore, Springer Nature Singapore Mai 2020, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 202,47
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: New. New. book.
Sprache: Englisch
Verlag: Springer Nature Singapore, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Sprache: Englisch
Verlag: Springer Nature Singapore, Springer Nature Singapore, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Sprache: Englisch
Verlag: Springer-Nature New York Inc, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 231,04
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 299 pages. 9.25x6.10x0.63 inches. In Stock.
Sprache: Englisch
Verlag: Springer-Nature New York Inc, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 233,54
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 275 pages. 9.75x6.50x0.75 inches. In Stock.
Sprache: Englisch
Verlag: Springer Verlag, Singapore, SG, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 201,54
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. 2020 ed. This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Sprache: Chinesisch
Verlag: Machinery Industry Press, 2021
ISBN 10: 7111685008 ISBN 13: 9787111685005
Anbieter: liu xing, Nanjing, JS, China
paperback. Zustand: New. Paperback. Pub Date: 2021-07-01 Pages: 264 Language: Chinese Publisher: Machinery Industry Press. Machine learning is a discipline about building predictive or descriptive models from data to improve machine problem-solving capabilities.?After the model is established. an appropriate optimization algorithm is needed to solve the parameters of the model. Therefore. the optimization algorithm is an important part of machine learning.?However. traditional optimization algorithms are not complete.
Sprache: Englisch
Verlag: Springer Nature Singapore Mai 2021, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. 275 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Singapore Mai 2020, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. 300 pp. Englisch.
Anbieter: moluna, Greven, Deutschland
EUR 136,16
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first monograph on accelerated first-order optimization algorithms used in machine learningIncludes forewords by Michael I. Jordan, Zongben Xu, and Zhi-Quan Luo, and written by experts on machine learning and optimization.
Sprache: Englisch
Verlag: Springer, Berlin|Springer Nature Singapore|Springer, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Anbieter: moluna, Greven, Deutschland
EUR 137,26
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order opt.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 197,99
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.