Softcover. VI-160 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16794 9783764328351 Sprache: Englisch Gewicht in Gramm: 550.
Verlag: Basel : Birkhäuser (Lectures in Mathematics ETH Zürich), 1995
ISBN 10: 3764328355 ISBN 13: 9783764328351
Sprache: Englisch
Anbieter: Antiquariat Smock, Freiburg, Deutschland
Zustand: Gut. Formateinband: Broschierte Ausgabe VI, 160 S. (24 cm) 1. Aufl.; Gut und sauber erhalten. Sprache: Englisch Gewicht in Gramm: 450 [Stichwörter: David Hilbert, Algebraic Geometry, ; Global analysis; Number theory].
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 52,55
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 57,40
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Basel. Birkhäuser Verlag., 1995
ISBN 10: 3764328355 ISBN 13: 9783764328351
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 160 Seiten, mit Abbildungen, Englisch 322g.
EUR 55,76
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Zustand: New. pp. 172.
Anbieter: Fireside Bookshop, Stroud, GLOS, Vereinigtes Königreich
Verbandsmitglied: PBFA
EUR 46,74
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Very Good. Type: Book N.B. Small gold label to ffep. Corners a little rubbed.
Zustand: New. These lecture notes present the holomorphic functions living on the two-dimensional complex unit ball. In the course of their construction, the reader is invited to work with complex multiplication, moduli fields, moduli space of curves, surface uniformizations and Picard modular forms. Series: Lectures in Mathematics. ETH Zurich. Num Pages: 172 pages, 3 black & white illustrations, biography. BIC Classification: PBH; PBKD; PBKF; PBMW. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 244 x 170 x 9. Weight in Grams: 285. . 1994. Paperback. . . . .
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 77,15
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 1st edition. 168 pages. German language. 9.37x6.61x0.47 inches. In Stock.
Zustand: New. These lecture notes present the holomorphic functions living on the two-dimensional complex unit ball. In the course of their construction, the reader is invited to work with complex multiplication, moduli fields, moduli space of curves, surface uniformizations and Picard modular forms. Series: Lectures in Mathematics. ETH Zurich. Num Pages: 172 pages, 3 black & white illustrations, biography. BIC Classification: PBH; PBKD; PBKF; PBMW. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 244 x 170 x 9. Weight in Grams: 285. . 1994. Paperback. . . . . Books ship from the US and Ireland.
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
Taschenbuch. Zustand: Neu. The Ball and Some Hilbert Problems | Rolf-Peter Holzapfel | Taschenbuch | 160 S. | Englisch | 1994 | Birkhäuser Basel | EAN 9783764328351 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 75,17
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 172 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 172.
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but .
Verlag: Springer, Basel, Birkhäuser Basel, Birkhäuser Dez 1994, 1994
ISBN 10: 3764328355 ISBN 13: 9783764328351
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21. 160 pp. Englisch.
Verlag: Birkhäuser Basel, Birkhäuser Basel Dez 1994, 1994
ISBN 10: 3764328355 ISBN 13: 9783764328351
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 172 pp. Englisch.