Verlag: Morgan & Claypool Publishers, 2016
ISBN 10: 1627059784 ISBN 13: 9781627059787
Sprache: Englisch
Anbieter: Our Kind Of Books, Liphook, Vereinigtes Königreich
EUR 14,17
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbSoft cover. Zustand: As New. This book has been in storage since publication and is unread. Hence the description as new .
EUR 48,52
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 47,34
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Best Price, Torrance, CA, USA
EUR 43,88
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
EUR 54,57
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Books Puddle, New York, NY, USA
EUR 62,07
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. 1st edition NO-PA16APR2015-KAP.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 53,89
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 53,88
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 58,64
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Springer International Publishing, Springer International Publishing Mär 2016, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 48,14
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch.
Verlag: Springer International Publishing, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 48,14
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 62,88
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Verlag: Springer International Publishing Mrz 2016, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 48,14
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise. 148 pp. Englisch.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 65,59
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Verlag: Springer International Publishing, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 42,96
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. James McCracken received his B.S. in Physics and B.S. in Astrophysics from the Florida Institute of Technology in 2004, his M.S. from the University of Central Florida in 2006, and his Ph.D. in Physics from George Mason University in 2015. He currently live.