Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 300.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 73,66
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 300.
EUR 82,13
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 80,94
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 300.
EUR 90,47
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 80,73
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 80,72
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 80,51
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 91,04
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 566.
Verlag: Springer New York, Springer New York Apr 2016, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 600 pp. Englisch.
Verlag: Springer New York, Springer US Apr 2018, 2018
ISBN 10: 1493979124 ISBN 13: 9781493979127
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 600 pp. Englisch.
Taschenbuch. Zustand: Neu. Generalized Principal Component Analysis | René Vidal (u. a.) | Taschenbuch | xxxii | Englisch | 2018 | Springer US | EAN 9781493979127 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer New York, Springer New York, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
Verlag: Springer New York, Springer US, 2018
ISBN 10: 1493979124 ISBN 13: 9781493979127
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 124,97
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 133,14
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. New. book.
Verlag: Springer New York Apr 2016, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley. 600 pp. Englisch.
Verlag: Springer New York Apr 2018, 2018
ISBN 10: 1493979124 ISBN 13: 9781493979127
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley. 600 pp. Englisch.
Anbieter: moluna, Greven, Deutschland
EUR 64,33
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces fundamental statistical, geometric and algebraic conceptsEncompasses relevant data clustering and modeling methods in machine learningAddresses a general class of unsupervised learning problemsGeneralizes the theory and me.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 112,46
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 566.
Verlag: Springer-Verlag New York Inc., 2018
ISBN 10: 1493979124 ISBN 13: 9781493979127
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 97,43
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 900.
Anbieter: moluna, Greven, Deutschland
EUR 68,62
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces fundamental statistical, geometric and algebraic conceptsEncompasses relevant data clustering and modeling methods in machine learningAddresses a general class of unsupervised learning problemsGeneralizes the theory and me.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 566.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Generalized Principal Component Analysis | René Vidal (u. a.) | Buch | xxxii | Englisch | 2016 | Springer | EAN 9780387878102 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.