Verlag: Packt Publishing (edition ), 2020
ISBN 10: 1838647295 ISBN 13: 9781838647292
Sprache: Englisch
Anbieter: BooksRun, Philadelphia, PA, USA
EUR 16,15
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
Anbieter: Celler Versandantiquariat, Eicklingen, Deutschland
Verbandsmitglied: GIAQ
EUR 40,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPackt Publishing, Birmingham, 2020, 341 Seiten, kartoniert, Quart---- Text in Englisch - 700 Gramm.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 43,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 48,76
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you w.
Anbieter: California Books, Miami, FL, USA
EUR 43,08
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Packt Publishing 6/12/2020, 2020
ISBN 10: 1838647295 ISBN 13: 9781838647292
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 42,78
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks 1.38. Book.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1838647295 ISBN 13: 9781838647292
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 52,24
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architecturesKey FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook DescriptionMost programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models.You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you'll explore CNN, recurrent neural network (RNN), and GAN models and their application.By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is forThis book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.
Verlag: Packt Publishing 2020-06-12, 2020
ISBN 10: 1838647295 ISBN 13: 9781838647292
Sprache: Englisch
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 39,70
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
EUR 39,48
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1838647295 ISBN 13: 9781838647292
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 56,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architecturesKey FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook DescriptionMost programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models.You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you'll explore CNN, recurrent neural network (RNN), and GAN models and their application.By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is forThis book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 42,65
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Goodwill Industries of VSB, Oxnard, CA, USA
EUR 17,25
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. The book is nice and 100% readable, but the book has visible wear which may include stains, scuffs, scratches, folded edges, sticker glue, torn on front page,highlighting, notes, and worn corners.
EUR 45,04
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 46,92
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: thebookforest.com, San Rafael, CA, USA
EUR 26,33
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: New. Well packaged and promptly shipped from California. Partnered with Friends of the Library since 2010.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 38,30
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 76,23
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. New. book.
Anbieter: HPB-Red, Dallas, TX, USA
EUR 15,89
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 48,43
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 48,44
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Verlag: Packt Publishing, Limited, 2020
ISBN 10: 1838647295 ISBN 13: 9781838647292
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 48,10
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 345.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 60,46
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architecturesKey FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook DescriptionMost programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models.You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you'll explore CNN, recurrent neural network (RNN), and GAN models and their application.By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is forThis book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.