Paperback. Zustand: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less 2.25.
Verlag: Packt Publishing, Limited, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages.
Verlag: Packt Publishing, Limited, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
paperback. Zustand: Very Good. Cover is in excellent condition. The binding is in good shape. The pages of this book are clean and unmarked. See photos. FAST SHIPPING & FREE TRACKING!
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 43,65
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Packt Publishing 12/18/2020, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices. Book.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 43,33
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 49,65
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 47,01
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Packt Publishing 2020-12-18, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 45,29
Anzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 46,46
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Rarewaves USA, OSWEGO, IL, USA
EUR 64,38
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems.What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 47,00
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 68,10
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems.What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.
EUR 55,44
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. This book focuses on expert-level explanations and implementations of scalable reinforcement learning algorithms and approaches. Starting with the fundamentals, the book covers state-of-the-art methods from bandit problems to meta-reinforcement learning. Yo.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
EUR 66,05
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems.What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 61,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems.What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.
Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 55,78
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 48,35
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Verlag: Packt Publishing, Limited, 2020
ISBN 10: 1838644148 ISBN 13: 9781838644147
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 50,89
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 544.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 54,42
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222.
Taschenbuch. Zustand: Neu. Mastering Reinforcement Learning with Python | Build next-generation, self-learning models using reinforcement learning techniques and best practices | Enes Bilgin | Taschenbuch | Englisch | 2020 | Packt Publishing | EAN 9781838644147 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey Features:Understand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook Description:Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL.Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning.As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls.By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems.What You Will Learn:Model and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho This Book Is For:This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.