Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 58,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 61,92
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Sharehousegoods, Colgate, WI, USA
EUR 37,84
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. This book has been examined carefully and the cover and pages are in very good condition. It is clean and tight inside. Fast Shipping - Safe and Secure Mailer - Our goal is to deliver a better item than what you are hoping for! If not we will make it right!
Verlag: Packt Publishing 6/10/2024, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 57,82
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Modern Computer Vision with PyTorch - Second Edition: A practical roadmap from deep learning fundamentals to advanced applications and Generative AI 2.77. Book.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 63,16
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: California Books, Miami, FL, USA
EUR 62,97
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 70,16
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Starting from the basics of neural networks, this book covers over 50 applications of computer vision and helps you to gain a solid understanding of the theory of various architectures before implementing them. Each use case is accompanied by a notebook in .
Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 55,51
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 57,47
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 57,64
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 60,44
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 62,45
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 61,91
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 68,01
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 67,87
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 69,13
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1839213477 ISBN 13: 9781839213472
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 86,67
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questionsKey FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook DescriptionDeep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud.By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is forThis book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Verlag: Packt Publishing Limited, GB, 2020
ISBN 10: 1839213477 ISBN 13: 9781839213472
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 95,59
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questionsKey FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook DescriptionDeep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud.By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is forThis book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
EUR 95,11
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 820.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 56,47
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 63,67
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 63,94
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 70,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 68,34
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 75,63
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Verlag: Packt Publishing, Limited, 2020
ISBN 10: 1839213477 ISBN 13: 9781839213472
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 67,21
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 824.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 87,07
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion modelsPurchase of the print or Kindle book includes a free Elektronisches Buch in PDF formatKey Features: Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google ColabBook Description:Whether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks.The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion.You'll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You'll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you'll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you'll learn best practices for deploying a model to production.By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What You Will Learn: Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to productionWho this book is for:This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by not Elektronisches Buch on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 88,72
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code not Elektronisches Buch and test questionsKey FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook DescriptionDeep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud.By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.What You Will LearnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for¿This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by not Elektronisches Buch in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 103,70
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND pp. 820.
Verlag: Packt Publishing - ebooks Account, 2024
ISBN 10: 1803231335 ISBN 13: 9781803231334
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 98,66
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 820.