Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Speedyhen, London, Vereinigtes Königreich
EUR 69,75
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: NEW.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Better World Books: West, Reno, NV, USA
EUR 69,88
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. 44. Used book that is in clean, average condition without any missing pages.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 85,05
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models a.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 82,62
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 89,36
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning'--.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 86,79
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
EUR 91,78
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. 2022. New. Hardcover. . . . . .
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 78,54
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 82,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press CUP, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
EUR 94,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 472.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 99,95
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 472.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 89,49
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 89,95
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 112,74
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. 2022. New. Hardcover. . . . . . Books ship from the US and Ireland.
Verlag: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 88,01
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 121,05
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 390 pages. 10.00x7.00x1.00 inches. In Stock.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 77,35
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 111,82
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Grand Eagle Retail, Fairfield, OH, USA
EUR 94,02
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 83,55
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 390 pages. 10.00x7.00x1.00 inches. In Stock. This item is printed on demand.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 86,49
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1060.
Verlag: Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 89,65
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. pp. 472 This item is printed on demand.