Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 66,93
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 67,71
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 59,38
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, GB, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 79,17
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 66,92
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, GB, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 84,24
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 70,68
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 73,20
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 92,40
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
EUR 92,58
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 288.
Verlag: Cambridge University Press, Cambridge, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 71,67
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 90,35
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 298 pages. 9.00x6.00x0.50 inches. In Stock.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: HPB-Red, Dallas, TX, USA
EUR 12,47
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Verlag: Cambridge University Press, Cambridge, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 91,94
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 59,89
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Toscana Books, AUSTIN, TX, USA
EUR 111,45
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Verlag: Cambridge University Press, Cambridge, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Grand Eagle Retail, Mason, OH, USA
EUR 73,67
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Best Price, Torrance, CA, USA
EUR 55,57
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 74,54
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 66,01
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 298 pages. 9.00x6.00x0.50 inches. In Stock. This item is printed on demand.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 94,85
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 288.
Verlag: Cambridge University Press, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 100,28
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND pp. 288.