Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Corner of a Foreign Field, Tokyo, TOKYO, Japan
Erstausgabe
Hardcover. Zustand: Fine. No Jacket. 1st Edition. 2006.Hardcover.Fine.343 pages.Ships from Japan.Usually ships in 1-2 working days.
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Hardcover. Zustand: Fine. Leichte Risse. A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Zustand: New. pp. xiv + 343 1st Edition.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. xiv + 343.
Anbieter: BennettBooksLtd, San Diego, NV, USA
Hardcover. Zustand: New. In shrink wrap. Looks like an interesting title!
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 159,30
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 160,74
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 159,55
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 133,52
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Like New. Like New. book.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 163,06
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 163,05
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: California Books, Miami, FL, USA
EUR 195,82
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 192,23
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Zustand: New. pp. 492 2nd Edition.
Zustand: New. pp. 492 2nd Edition.
Taschenbuch. Zustand: Neu. Support Vector Machines for Pattern Classification | Shigeo Abe | Taschenbuch | xx | Englisch | 2012 | Springer | EAN 9781447125488 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 237,99
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. 2nd ed. 2010. A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Verlag: Springer London, Springer London, 2012
ISBN 10: 1447125487 ISBN 13: 9781447125488
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Verlag: Springer-Verlag New York Inc, 2012
ISBN 10: 1447125487 ISBN 13: 9781447125488
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 235,26
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2nd edition. 493 pages. 9.25x6.10x1.18 inches. In Stock.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 233,06
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 223,71
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. Like New. book.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 223,71
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Like New. Like New. book.
EUR 257,34
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 216,64
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. 2nd ed. 2010. A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 105,22
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. xiv + 343 Illus. This item is printed on demand.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors. 492 pp. Englisch.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors. 473 pp. Englisch.