Anbieter: Books Puddle, New York, NY, USA
EUR 40,42
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. 2025th edition NO-PA16APR2015-KAP.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 39,69
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer Nature Switzerland, Springer International Publishing, 2024
ISBN 10: 3031620607 ISBN 13: 9783031620607
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 29,95
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the model's performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the model's volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 144,92
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Best Price, Torrance, CA, USA
EUR 139,37
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 172,69
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Springer-Nature New York Inc, 2024
ISBN 10: 3031620607 ISBN 13: 9783031620607
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 216,33
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 82 pages. 9.44x6.61x9.69 inches. In Stock.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 43,91
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Verlag: Springer, Berlin|Springer Nature Switzerland|Springer, 2024
ISBN 10: 3031620607 ISBN 13: 9783031620607
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 127,40
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distin.
Verlag: Springer Nature Switzerland, Springer International Publishing Jun 2024, 2024
ISBN 10: 3031620607 ISBN 13: 9783031620607
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 149,79
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the model¿s performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the model¿s volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 84 pp. Englisch.