Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 21,74
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 22,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press 11/19/2020, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 24,60
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Can We Be Wrong? the Problem of Textual Evidence in a Time of Data 0.28. Book.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 22,48
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 26,34
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, Cambridge, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Grand Eagle Retail, Fairfield, OH, USA
EUR 29,29
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 28,33
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. pp. 75.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 22,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
EUR 28,37
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. 2020. Paperback. . . . . .
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
EUR 36,53
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. pp. 75.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 22,22
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 25,68
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 34,33
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. 2020. Paperback. . . . . . Books ship from the US and Ireland.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 34,87
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbZustand: New. pp. 75.
Verlag: Cambridge University Press Nov 2020, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 27,79
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware - This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence.
Verlag: Cambridge University Press, Cambridge, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 26,67
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Cambridge University Press, Cambridge, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 39,65
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Anbieter: moluna, Greven, Deutschland
EUR 29,40
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the general.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 21,26
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 75 pages. 8.75x6.00x0.25 inches. In Stock. This item is printed on demand.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108926207 ISBN 13: 9781108926201
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 25,22
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 144.