Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659818178 ISBN 13: 9783659818172
Anbieter: WeBuyBooks, Rossendale, LANCS, Vereinigtes Königreich
EUR 26,42
Anzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659818178 ISBN 13: 9783659818172
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 67,66
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing Mai 2018, 2018
ISBN 10: 3659818178 ISBN 13: 9783659818172
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659818178 ISBN 13: 9783659818172
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. High Dimensional Data Visualization Using Self Organizing Maps | Vikas Chaudhary (u. a.) | Taschenbuch | 52 S. | Englisch | 2018 | LAP LAMBERT Academic Publishing | EAN 9783659818172 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing Mai 2018, 2018
ISBN 10: 3659818178 ISBN 13: 9783659818172
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space. 52 pp. Englisch.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659818178 ISBN 13: 9783659818172
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space.