Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 54,57
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 58,51
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 58,49
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Revised edition NO-PA16APR2015-KAP.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 66,38
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 89,08
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. revised edition. 690 pages. 9.75x6.75x1.35 inches. In Stock.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 112,93
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 111,75
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press CUP, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 720.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 114,52
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 122,76
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 720.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 114,51
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 131,49
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, Cambridge, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples (density estimation) or from Gaussian regression/signal in white noise problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 720.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 131,00
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Now in paperback: the new classic on the theory of statistical inference in statistical models with an infinite-dimensional parameter space.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 173,75
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 720 pages. 10.37x7.04x1.71 inches. In Stock.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 78,53
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 63,61
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising fr.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Mathematical Foundations of Infinite-Dimensional Statistical Models | Evarist Giné (u. a.) | Taschenbuch | Kartoniert / Broschiert | Englisch | 2021 | Cambridge University Press | EAN 9781108994132 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Verlag: Cambridge University Press, Cambridge, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 126,59
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples (density estimation) or from Gaussian regression/signal in white noise problems. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Cambridge University Press, 2017
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 125,51
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising fr.
Verlag: Cambridge University Press, Cambridge, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples (density estimation) or from Gaussian regression/signal in white noise problems. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Cambridge University Press, 2017
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Mathematical Foundations of Infinite-Dimensional Statistical Models | Evarist Giné (u. a.) | Buch | Gebunden | Englisch | 2017 | Cambridge University Press | EAN 9781107043169 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.